Singular values of multiplicative Toeplitz matrices
نویسندگان
چکیده
منابع مشابه
Singular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملOn group inverse of singular Toeplitz matrices
In this paper we show that the group inverse of a real singular Toeplitz matrix can be represented as the sum of products of lower and upper triangular Toeplitz matrices. Such a matrix representation generalizes “Gohberg–Semencul formula” in the literature. © 2004 Elsevier Inc. All rights reserved. AMS classification: 15A09; 65F20
متن کاملSuperfast Algorithms for Singular Toeplitz-like Matrices
We apply the superfast divide-and-conquer MBA algorithm to possibly singular n × n Toeplitz-like integer input matrices and extend it to computations in the ring of integers modulo a power of a random prime. We choose the power which barely fits the size of a computer word; this saves word operations in the subsequent lifting steps. We extend our early techniques for avoiding degeneration while...
متن کاملWeak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملAccurate Singular Values of Bidiagonal Matrices
2 has nonzero entries only on its diagonal and first superdiagonal ) Compute orthogonal matrices P and Q such that Σ = P BQ is diagonal and nonnegat i 2 2 2 T 2 ive. The diagonal entries σ of Σ are the singular values of A . We will take them to be sorted in decreasing order: σ ≥ σ . The columns of Q= Q Q are the right singular vec i i + 1 1 2 t 1 2 ors, and the columns of P= P P are the left s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2016
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2016.1204978